報告題目: Murnaghan-Nakayama rule for Macdonald functions
報告人:景乃桓教授(美國北卡州立大學)
時間:2024年6 月12日 16:30-17:30
地點:理學院1號樓1-301
摘要:The classical Murnaghan-Nakayama rule for the symmetric group is an effective method to compute Schur functions and irreducible characters. We first review two q- Murnaghan-Nakayama rules for Hecke algebra and Hecke-Clifford algebra using vertex algebraic approach. We will then discuss our multi-parameter M-N rule for Macdonald polynomials, which contains the two q-M-N rules as special cases. The general M-N rule have several applications: an inversion of the Pieri rule of Hall-Littlewood functions and (q,t)- Kostka polynomials as well as a general procedure to compute Macdonald polynomials. This talk is joint work with Ning Liu.
報告人簡介:
景乃桓,,美國北卡州立大學教授,,德國洪堡學者,美國富爾布萊特學者,。先后在美國普林斯頓高等研究院,,密執(zhí)安大學,堪薩斯大學和北卡州立大學等地工作或任教,。主要在量子群,、頂點代數(shù)、無限維李代數(shù),、代數(shù)組合等方面從事研究,,在對稱函數(shù)方面的研究成果被國際上命名為“景氏算子”。在國際數(shù)學刊物上發(fā)表100多篇論文,,編輯著作五部,。代表性雜志有:Invent.Math.,PNAS, Duke Math. J,Adv. Math.等。
中國·浙江 湖州市二環(huán)東路759號(313000) 浙ICP備10025412號 浙公網(wǎng)安備 33050202000195號 版權(quán)所有:黨委宣傳部