報告題目:The Minkowski type problems for unbounded convex hypersurfaces
報告人:葉德平
報告時間:6月17日(星期一)16:15-17:15
報告地點:理學(xué)院1-301
英文摘要:
The classical Minkowski problem for convex bodies (i.e., compact convex sets) aims to find necessary and/or sufficient conditions on a pregiven measure \mu such that \mu is equal to the surface area measure of some convex body. Such a problem turns out to be central in many areas such as analysis, geometry, and PDEs. In this talk, I will talk about our recent progress on the Minkowski type problems for unbounded convex hypersurfaces. I will discuss their connections with Monge-Ampere type equations and present our solutions to these Minkowski type problems.
中文摘要:
緊致凸集上的經(jīng)典Minkowski問題旨在找到使得給定測度\mu等于某個緊致凸集的曲面面積測度的充分或必要條件,,在分析、幾何和 PDE等許多領(lǐng)域都發(fā)揮著重要作用,。本報告將介紹無界凸超曲面上Minkowski型問題的最新研究進展,,以及它們與Monge-Ampere型方程的聯(lián)系,,最后給出Minkowski型問題的證明。
報告人簡介:
葉德平,,加拿大Memorial University終身教授?,F(xiàn)任加拿大數(shù)學(xué)會旗艦雜志Canadian Journal of Mathematics和Canadian Mathematical Bulletin的副主編(Associate Editor),并于2017年獲得JMAA Ames獎,。長期從事凸幾何分析,、幾何和泛函不等式、隨機矩陣,、量子信息理論和統(tǒng)計學(xué)等領(lǐng)域的研究,,在 Comm. Pure Appl. Math.,、Adv. Math.、J. Funct. Anal.,、Math. Ann.,、CVPDE等國際著名雜志發(fā)表論文40篇,主持加拿大國家自然科學(xué)基金(NSERC)項目,。
中國·浙江 湖州市二環(huán)東路759號(313000) 浙ICP備10025412號 浙公網(wǎng)安備 33050202000195號 版權(quán)所有:黨委宣傳部