報告題目:Disjoint hypercyclic and supercyclic composition operators on discrete weighted Banach spaces
報告人:周澤華
報告時間:6月28日(星期五)10:00-11:00
報告地點:理學(xué)院1-301
英文摘要:Linear dynamics is a young and rapidly evolving branch of functional analysis, which is mainly concerned with the behaviour of iterates of continuous linear operators on separable infinite dimensional topological vector spaces. Such as, hypercyclicity, supercyclicity, chaoticity, transitivity and so on. In this talk, we characterize the disjoint hypercyclic and disjoint supercyclic composition operators on the little weighted Banach space L^0_\mu(T) defined on an unbounded, locally finite metric space T with a distinguished element. We give an explanation of the conditions which are needed and list some examples simultaneously.
報告人簡介:周澤華,,教授,,博士生導(dǎo)師,。曾任天津大學(xué)數(shù)學(xué)系主任,,教育部大學(xué)數(shù)學(xué)課程教學(xué)指導(dǎo)委員會委員,;是“數(shù)學(xué)與應(yīng)用數(shù)學(xué)”國家級特色專業(yè)負責(zé)人,,《數(shù)學(xué)分析》國家級一流課程負責(zé)人,。研究方向為多復(fù)變與復(fù)幾何、函數(shù)空間與算子理論,、線性動力系統(tǒng),,先后主持國家自然科學(xué)基金項目7項,在《Math. Z》《Michigan Math. J.》《Indiana Univ. Math. J.》《Illinois J. Math.》《C. R. Math. Acad. Sci. Paris》《Proc. Amer. Math. Soc.》等期刊發(fā)表論文150余篇,。
中國·浙江 湖州市二環(huán)東路759號(313000) 浙ICP備10025412號 浙公網(wǎng)安備 33050202000195號 版權(quán)所有:黨委宣傳部